Characterization of Real-world Vibration Sources with a View Towards Optimal Energy Harvesting Architectures

نویسندگان

  • Robert Rantz
  • Shad Roundy
چکیده

A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying much attention to whether such idealizations are broadly representative of real sources. These “idealized input signals” are typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory “Real Vibration” database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Efficient Piezoelectric Energy Harvesting Techniques and Their Applications

Energy harvesting is the process of foraging electrical energy from energy sources available in the environment. This paper reviews energy harvesting technology using PZT as the specific piezoceramic material with its modules to determine the capacitance for optimal energy-storage in piezoelectric vibration energy harvesting (VEH) systems . It reviews various applications of piezoelectric energ...

متن کامل

Energy Neutral Operation of Vibration Energy-Harvesting Sensor Networks for Bridge Applications

Structural monitoring of critical bridge structures can greatly benefit from the use of wireless sensor networks (WSNs), however energy harvesting for the operation of the network remains a challenge in this setting. While solar and wind power are possible and credible solutions to energy generation, the need for positioning sensor nodes in shaded and sheltered locations, e.g., under a bridge d...

متن کامل

Vibration energy harvesting: fabrication, miniaturisation and applications

This paper reviews work at the University of Southampton and its spin-out company Perpetuum towards the use of vibration energy harvesting in real applications. Perpetuum have successfully demonstrated vibration-powered condition monitoring systems for rail and industrial applications. They have pursued applications were volume is not a particular constraint and therefore sufficient power can b...

متن کامل

A periodic folded piezoelectric beam for efficient vibration energy harvesting

Periodic piezoelectric beams have been used for broadband vibration energy harvesting in recent years. In this paper, a periodic folded piezoelectric beam (PFPB) is introduced. The PFPB has special features that distinguish it from other periodic piezoelectric beams. The Adomian decomposition method (ADM) is used to calculate the first two band gaps andtwelve natural frequencies of the PF...

متن کامل

Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration

With the development of low power electronics and energy harvesting technology, selfpowered systems have become a research hotspot over the last decade. The main advantage of self-powered systems is that they require minimum maintenance which makes them to be deployed in large scale or previously inaccessible locations. Therefore, the target of energy harvesting is to power autonomous ‘fit and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016